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The expansion of a thin metallic layer isochorically heated by a subpicosecond laser pulse is studied
theoretically and numerically. An analytical model that accounts for the liquid-vapor phase transition in ex-
panding flow is developed. Numerical simulations performed for an aluminum target that is described by a
multiphase equation of state confirm the analytical model. A repartition of the liquid and vapor phases in the
expanding cloud is studied and the expressions for sizes of liquid droplets formed in the relaxation process are
obtained. These estimates are in agreement with recent experimental and numerical results.
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I. INTRODUCTION

Subpicosecond laser pulses offer numerous advantages
for material processing. Having pulse duration shorter than
the electron-ion temperature relaxation time, such pulses can
heat a thin layer at the target surface to high temperatures,
while keeping its density unchanged. Properties of such
states of a warm dense matter are not known and are a sub-
ject of intense studies.1–10 Moreover, the ejected matter does
not interact with the laser pulse. Expansion and decomposi-
tion of the heated matter occur later in time and present an
interest for nanoparticle synthesis and production of thin
films.11–13 However, the process of expansion of heated ma-
terial proceeds in the time scale shorter than a few ns. The
phase transitions in fast evolving matter are poorly under-
stood. Recent studies5,7 have shown that there are two quali-
tatively different ablation processes. For laser fluences close
to the ablation threshold and very short laser pulses, the ions
in the surface layer remain cold and they are removed by the
electron-driven process. As soon as the average electron en-
ergy gained from the laser pulse becomes higher than the ion
binding energy, the electrons pull out cold ions from the
surface. For higher laser fluences and longer pulses, the ion
heating time becomes shorter than the ablation time. Then
the hydrodynamic ablation process becomes more important.
The matter in the laser heated layer is transformed in the
vapor phase and then expands under its own the thermal
pressure.

The objective of this paper is to consider the hydrody-
namic expansion of a thin hot surface layer under the condi-
tions where the phase transitions take place during the ex-
pansion and some of material finds itself in a liquid phase
surrounded by vapors. We evaluate the relative mass of the
liquid and vapor phases as a function of initial heating con-
ditions and estimate the characteristic size of liquid droplets
and their velocity.

Let us consider a homogeneous and isochoric heating of a
thin layer at the surface of a metal sample. The temperature
and the pressure in this layer increase sharply during the
heating process, while the density remains approximately
constant, equal to the initial density. We assume that at the
end of the laser pulse, the matter in this heated layer is in a
liquid state. The pressure relaxation induces an expansion of

this surface layer into vacuum, and creation of a shock wave,
which propagates into the target. During the relaxation pro-
cess, the density drops down and a part of liquid matter can
be converted into vapor. In first approximation, one can ne-
glect the heat transport processes and consider an isentropic
expansion process. The phase transition can be considered as
a fast process, which takes place locally during the two-
phase system expansion. That means we suppose that the
system is all time and everywhere in the local thermody-
namic equilibrium. In particular, during the expansion in the
two-phase domain, the pressures of the liquid and vapor
phases are equal to the saturated pressure on the binodal for
a given temperature, Pl�T�= Pv�T�= Psat�T�.

In the case of a relatively mild heating, where the expan-
sion drives the heated matter to the binodal at a density
larger than the critical density, the matter is in a liquid phase
when it enters in the two-phase region. The slope of the
adiabat at the binodal changes abruptly and the sound veloc-
ity, cs= ��P /���S

1/2, exhibits a dramatic fall. The isentropic
expansion is then split into two rarefaction waves: first,
which evolves in the liquid phase, and second, which evolves
in the two-phase state, where the sound velocity is much
lower. These two rarefaction waves are separated by a liquid
layer of a constant density.1–3 As a result of expansion of the
heated layer into vacuum, a shock wave is launched into the
cold matter.14,15 The relaxation in the cold matter behind the
shock forms a second liquid layer of a constant density along
with two other layers where the matter is in a mixed liquid-
vapor state. During the expansion phase, these liquid layers
are partially vaporized and partially transformed into liquid
droplets.

Such a complex structure of expansion flow with the
liquid-vapor phase transition was studied in Refs. 1–3 in the
case of a homogeneous and isochoric heating. The main re-
sults of these studies are recalled in Sec. II A. The results
concerning propagation of the shock wave into the target,
which is a classical hydrodynamic problem,14,15 are pre-
sented in Sec. II B. These two models are coupled in Sec.
II C to explain the isentropic relaxation of a high-pressure
layer in a cold matter and in vacuum. We show that two
homogeneous layers of liquid matter appear in the expanding
cloud, while a part of matter evolves into a liquid-vapor mix-
ture. These results are confirmed by numerical simulations
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performed with a thick aluminum target and a thin high-
pressure layer on its surface �Sec. III�. Estimates of the liquid
layer lifetimes are performed in Sec. IV A. The sizes of
ejected droplets are estimated from the point of view of sta-
bility of expanding layer and the energy balance acting on
each droplet in Sec. IV B. The average droplet size decreases
as the initial pressure in the heated layer increases and our
results show that the biggest droplets are formed near the
target surface. These conclusions are compared with the re-
cent experimental and numerical studies.12,13,16–18

II. EXPANSION OF A HIGH-PRESSURE LAYER

The problem of expansion of a high-pressure layer on a
free surface consists of two phenomena: the rarefaction wave
emerging from the surface in vacuum and the shock wave
propagating into the target. To simplify the problem, we as-
sume that the thermal conduction can be neglected during the
expansion process, cst���t �where � is the thermal conduc-
tivity�, and that initially the pressure is homogeneous in the
heated layer. Figure 1 presents the density and pressure pro-
files when the heating is terminated but the expansion is not
started yet. The heated layer of size 2h is between points x1
and x3, where the pressure is P2. Point x2 is in the middle of
this layer. The cold matter is in the interval between 0 and x1,
where the pressure is P1� P2. The vacuum is on the right
side of x3. The density is homogeneous, �=�s.

We assume that the high-pressure layer is in a liquid state
and at t=0 two rarefaction waves are launched from edges x1
and x3 toward center x2. Because of the symmetry of the
problem, in the beginning we can divide the layer �x1 ,x3�
into two equal parts of thickness h, assuming a rigid bound-
ary at x2. The first half-layer �x2 ,x3� expands in vacuum,
while the second half-layer �x1 ,x2� expands into the cold
matter.

A. Expansion of a finite-thickness layer in vacuum

First, let us consider the layer of thickness h between x2
and x3 that expands in vacuum. As the heat conductivity is
neglected, the expansion of this layer is treated as an isen-
tropic process and it is described by a centered rarefaction
wave.14,15 The equations of gas dynamics in one dimension
read

��
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+ u
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+ �
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where � and u are, respectively, the density and the velocity;
cs= ��P /���S

1/2 is the sound velocity; and P is the pressure.
These equations should be complemented by the equation of
the adiabat S�P ,��=S0 �where S0 is entropy at the beginning
of expansion�, which can be written in the form P= P���.

Figure 2 shows the characteristics of the expanding layer.
The rarefaction process consists of two stages: �1� propaga-
tion of the rarefaction wave det 1 across the target and for-
mation of a plateau plt 1 of a density �e due to the phase
transition and �2� interaction of the forward and reflected
waves in int 1 and formation of a density gap gap 1.

The rarefaction wave propagates into the target with the
sound velocity c0=cs��s� in the unperturbed material. This
wave is reflected at point x2 at the time tr=h /c0 due to the
collision with the opposite traveling rarefaction wave origi-
nated from x1. Before tr, the flow is described by a centered
rarefaction wave in a semi-infinite layer and it is self-similar.
The self-similar variable is �=x / t, and the solutions to Eqs.
�1� and �2� for isentropic expansion are

� = u − cs, u = �
�

�s cs

�
d� . �3�

The structure of rarefaction flow is more complicated if the
expansion adiabats cross over the binodal at a temperature Te
smaller than the critical temperature and enter the two-phase
region. There, the matter is in a heterogeneous phase of liq-
uid and gas, and the sound velocity is lower. This splits the
rarefaction wave into two parts: first part, which evolves in
the liquid state �det 1 in Fig. 2�, and a second part �det 2�,
which evolves in the two-phase state.

At the crossing point e of the adiabat and the binodal, the
fluid velocity must be continuous and ue1=ue2=ue �ue1 is the
velocity at point e on the liquid state and ue2 is velocity at e
on the two-phase region�. According to Eq. �3�, this implies a
discontinuity in the self-similar variable �. As ce1 is greater
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FIG. 1. Density and pressure profiles in the target after the
heating.
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FIG. 2. Characteristics of the expanding matter, which was ini-
tially between x2 and x3.
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than ce2, from Eq. �3� �e1��e2 and the first and second parts
of the rarefaction wave are not immediately adjacent one to
another. They are separated by a plateau1–3 �plt 1 in Fig. 2� of
a uniform density �e, which moves with the velocity ue. The
width of the plateau is hp1= ��e2−�e1�t= �ce1−ce2�t, and it in-
creases with time.

Figure 3 represents the density profile as a function of the
self-similar variable �. The calculations were performed with
an aluminum target at the initial density �s=2.7 g /cm3 and
the initial pressure Ps=26 GPa. Here, �0 is the value of � at
the front of the rarefaction wave in the unperturbed material
and �e1 and �e2 are, respectively, the values of � on the liquid
state and in the two-phase region at point e.

According to Fig. 3, the expansion flow is divided into
four parts. For ���0, the density is constant and equal to �s.
This part corresponds to the unperturbed material. For �0
����e1, the density decreases from �s to �e=1.8 g /cm3. In
this part, the matter is in the liquid state and the expansion
corresponds to the first portion of the rarefaction wave det 1.
For �e1����e2, the density is constant and is equal to �e.
This part corresponds to the plateau plt 1 of a constant den-
sity. For �e2��, the density decreases sharply. It is smaller
than �e and the matter is in the two-phase state. In this part,
the expansion corresponds to the second portion of rarefac-
tion wave det 2.

At the time tr=h /c0, the rarefaction is reflected and it
interacts with the incident wave. The flow is divided into two
parts: in the interval xr�t��x�xe1�t� there is one simple
wave �det 1 in Fig. 2�, while the incident and reflected waves
interact in 0�x�xr�t� �int 1 in Fig. 2�. To obtain a qualita-
tive picture of the flow in the interaction zone, let us consider
the material as an ideal gas with adiabatic index �. The prob-
lem of the interaction of an incident and reflected waves was
solved in Ref. 14 and the solution reads

c =
h

t
� t

tr
��3−��/��+1�

, � = �s� tr

t
�4/��+1�

, u =
x

t

+
h

t
� t

tr
��3−��/��+1�

. �4�

According to Eq. �4�, the density in the interaction region
does not depend on coordinate and it decreases with time.1–3

The reflected wave reaches the plateau at the time tf
= tr��s /�e���+1�/4. At this time, the density is homogeneous
and equal to �e in the reflected wave and in the plateau.

The velocity, according to Eq. �4�, is a linear function in
the wave interaction region and it is constant in the plateau.
Therefore, for t� tf, the matter from the wave interaction
region cannot enter in the plateau. The size of the plateau is
maximum at tf and it is hp1= �ce1−ce2�tf. The density in the
wave interaction region continues to decrease according to
Eqs. �1� and �2� and it becomes smaller than �e. A gap is
formed between the target backside and the plateau �gap 1 in
Fig. 2�.

The flow at t� tf corresponds to a liquid layer of a con-
stant density �e �plateau�, separated from the rest of the tar-
get and flying with a constant velocity. In front of the pla-
teau, there is a low-density tail. Behind it, there is a gap
made of a mixture of liquid and vapor. The rarefaction front
propagates into the plateau with the velocity ce2 and its thick-
ness decreases with time. This is a slow process as the ve-
locity ce2 is very small.

This general picture of a rarefaction wave in two-phase
system can be better seen in numerical simulations. In the
example shown in Fig. 4, the simulation was made with a
thin aluminum target of thickness h=40 nm. The initial den-
sity and the initial temperature are, respectively, �s
=2.7 g /cm3 and Ps=26 GPa. The sound velocity in the un-
perturbed material is c0=7.17 km /s. The density profiles are
shown for times greater than tf. The density in the gap de-
creases from 1.3 g /cm3 at 15 ps to 0.4 g /cm3 at 50 ps. The
density in the plateau is homogeneous and it is equal to �e
=1.8 g /cm3. The outer region, where the density decreases
sharply, is the external part of the rarefaction wave, which is
also in the two-phase state.

B. Relaxation in the cold matter

Here, we consider the matter in the interval between 0 and
x2 in Fig. 1. The pressure jump at x1 launches a shock wave
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FIG. 3. �Color online� Density profile in the self-similar rarefac-
tion wave of an aluminum target. The initial conditions are Ts

=0.52 eV and �s=2.7 g /cm3.
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into the cold matter and a rarefaction wave into the hot layer.
Figure 5 presents the relaxation characteristics in the cold

matter. In the rarefaction wave �det 3�, the density decreases
and becomes smaller than �s. The matter in the low-pressure
area is compressed to a density �i1 greater than �s, and a
shock wave is launched. As the pressure is constant behind
the shock wave,14,15 the expansion of the high-pressure layer
is limited and a plateau plt 3 of a density �i2��s appears
behind the compressed matter. The line �i shows the position
of the contact point between hot and cold matters.

The rarefaction wave det 3 reaches x2 at time tr where it
collides with det 1 �see Fig. 2� and the two waves interact
one with other. As it was explained in the previous section, in
the interaction zone int 1 the density is homogeneous and
decreases with time. The interaction zone collides with the
plateau plt 3 at the time tc and a new rarefaction wave ap-
pears between the plateau plt 3 and the interaction area int 1
�det 4 in Fig. 5�. When the rarefaction foot reaches x2 at the
time tx2

, our artificial separation of the layers �x1 ,x2� and
�x2 ,x3� is no longer valid. The subsequent analysis of expan-
sion process is presented in the next section.

An analytical description of the relaxation process can be
done for an ideal gas with the adiabatic index �. Assuming
that the pressure Pi in the compressed matter is greater than
the pressure in the cold matter, Pi	 P1, the density and pres-
sure behind the shock wave14,15 can be expressed as

�i1 =
� + 1

� − 1
�s, Pi =

� + 1

2
�sui

2, �5�

where ui is the matter velocity behind the shock. Because of
the continuity of the matter, it is the same as the velocity in
the plateau plt 3, ui=ui2. This velocity ui2 can be found con-
sidering the rarefaction wave det 3. As the expansion is isen-
tropic, the pressure in the rarefaction wave det 3 writes Pi
= P2��i2 /�s�� and the velocity is

ui2 = − Nc0�1 − ��i2

�s
�1/N� , �6�

where N=2 / ��−1� and c0=��P2 /�s. Then, the density �i2 in
the plateau plt 3 is given by the polynomial equation

��i2

�s
��

− N�
� + 1

� − 1
�1 + ��i2

�s
�2/N

− 2��i2

�s
�1/N� = 0. �7�

Figure 6 presents the density and pressure profiles at the time
t= tr /2 during the relaxation of the heated layer in the cold
matter for an adiabatic index �=3. Initially, the heated matter
is localized between x̄1=40 and x̄2=70 where the pressure is
P2=27Pe, and the cold matter is between 0 and x̄1 where the
pressure is P1=0.027Pe. The density in the matter is �s
=3�e. Here, Pe is the pressure at the binodal crossing point.

At the time t= tr /2, a part of matter, between x̄i1 and x̄i, is
compressed to a density �i1=6�e. Behind this region, be-
tween x̄i and x̄i2, a plateau of a constant density �i2=2.2�e is
appeared. In these two parts of the density profile, the pres-
sure and velocity are constant and equal to Pi=11Pe and
ui2=−0.26c0, respectively. The compressed matter corre-
sponds to the cold matter, which was pushed by the relax-
ation of the heated layer, and the matter in the plateau cor-
responds to the heated matter, which was expanded to the
pressure Pi.

Behind the plateau, between x̄i2 and x̄0, the density and
the pressure decrease, respectively, from �s to �i2 and from
P2 to Pi. This part corresponds to the heated matter, which
expands into the cold matter �det 3 in Fig. 5�.

As in the previous section, the rarefaction wave front
reaches x2 at the time tr=h /c0. In the interaction zone �int 1
in Fig. 5�, the density is homogeneous and it decreases with
time. At the time tc= tr��s /�i2���+1�/4, the density in int 1 is
equal to the density �i2 in the plateau plt 3.

For times t� tc, the density in the wave interaction zone
int 1 continues to decrease and a rarefaction wave appears
between the plateau plt 3 and the wave interaction zone int 1
�det 4 in Fig. 5�. The rarefaction front propagates into the
plateau with the velocity ci2=c0��i2 /�s��, and �4=ui2−ci2.
The position of rarefaction wave foot is determined by using
the Riemann invariants J
=u
Nc �Refs. 14 and 15�, and
the expressions of the velocity u and sound velocity c �4� in
the wave interaction region �int 1 in Fig. 5�. It reaches point
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FIG. 5. Characteristics of the relaxation in the cold matter. 1
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x2 at the time tx2
. For �=3, �5=�i2=0.48c0 and tx2

=c0tr /�i2.

C. Relaxation of a high-pressure layer

We have seen that the relaxation of a hot layer induces a
formation of a plateau of constant density from the vacuum
side, while a shock wave is launched in the cold matter.
Figure 7 presents the characteristics of the relaxation process
within the heated layer.

The heated matter, initially in the interval x1x3, expands in
vacuum and into the cold matter. Two rarefaction waves
propagate into the heated matter �det 1 and det 3 in Fig. 7�
with the velocity c0. At time tr, they reach the middle of the
heated layer x2.

The relaxation in the cold matter induces the formation of
a shock wave, which compresses the cold matter to the den-
sity �i1. Behind the compressed matter, a plateau �plt 3 in
Fig. 7� of the density �i2��s appears.

From the vacuum side, the phase transition induces a dis-
continuity of sound velocity, which splits the rarefaction
wave into two waves: one evolves in the liquid matter �det 1�
and another evolves in the two-phase state �det 2�. They are
separated by a plateau �plt 1� of a constant density �e.

For times t� tr=h /c0, overlapping of two rarefaction
waves det 1 and det 3 creates the interaction region int 1 in
Fig. 7, where the density is homogeneous and decreases with
time. At the time tc, the density in int 1 is �i2. As the time
goes on, the interaction of int 1 with the plateau plt 3 creates
the rarefaction wave det 4 in Fig. 7. For �1=3, the front of
det 4 propagates into plt 3 with the velocity −c0, and the foot
propagates with the velocity �i2.

At the time td, the wave front of det 4 reaches the com-
pressed matter. A part of the rarefaction wave is transmitted
into the compressed matter and a part is reflected. The re-
flected wave interacts with the incident wave in the interac-
tion region int 2 in Fig. 7.

At the time tf, the density in the interaction region int 1 is
equal to the density �e in the plateau plt 1. A first gap appears
in the expanding cloud �gap 1 in Fig. 7� as it was explained
in Sec. II A.

As the matter is in the two-phase state in the gap 1, a

discontinuity of sound velocity appears in the rarefaction
wave det 4. The rarefaction is split into two waves, which are
separated by a plateau of constant density �e �plt 2 in Fig. 7�.
The width of this plateau is hp2= �ce1−ce2��t− tf� and it in-
creases with time.

When the reflected wave in int 2 reaches the plateau plt 2
at time tf2, the density is homogeneous and equal to �e in the
interaction region int 2 and in the plateau plt 2. Similarly to
what had happened in the interaction region int 1, the density
in int 2 continues to decrease and the matter enters in the
two-phase state, where the matter is a heterogeneous mixture
of liquid and vapor. A second gap appears in the expanding
cloud between the compressed matter and the plateau plt 2
�gap 2 in Fig. 7�. The plateau moves to the vacuum with the
constant velocity ue2=2�ci2−ce1� / ��1−1�.

Figure 8 presents the density profile in the system at time
t� tf2. The expanding cloud includes four elements: two
gaps, where the matter is a mixture of liquid and vapor, and
two plateaus of liquid matter. As the time goes on, both
plateaus move to the vacuum with constant velocities and
density in both gaps continues to decrease.

The mass repartition in the different elements of the ex-
panding cloud depends on the adiabatic index � and the po-
sition of the intersection of the adiabat and the binodal. To
obtain the mass repartition, one must use a more appropriate
equation of state �EOS� than that of an ideal gas.

III. NUMERICAL SIMULATIONS OF THE
RAREFACTION WAVE

As an example of two-phase rarefaction wave formation,
we consider an aluminum target of 200 nm thickness. The
initial pressure P1=10−4 GPa and the density �s
=2.7 g /cm3. A thin layer of h=40 nm on its surface is
heated to a pressure P2. The simulations were performed for
the three cases P2=20, 26, and 43 GPa. The thermal conduc-
tion is neglected during the expansion process.

Figure 9 presents the phase diagram of aluminum calcu-
lated from the multiphase EOS by Bushman et al.19 and three
adiabats corresponding to given initial pressures. Each adia-
bat starts in the liquid state where the pressure is greater than
the critical pressure �at point C� and its shape depends on P2.
The values of �e, c0, ce1, and ce2 given by the EOS are
presented in Table I.
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Each adiabat reaches the binodal where the pressure is
smaller than the critical pressure. In the two-phase region, a
part of the liquid is vaporized and vapor bubbles appear.
Their growth during the expansion drives liquid to fragmen-
tation and the two-phase system evolves to a heterogeneous
mixture of liquid droplets surrounded by vapor.

The numerical results are in agreement with the general
scenario described above. The heated matter expands into the
vacuum and the cold matter. Two plateaus of constant den-
sity �e and two gaps of density appear in the expanding
cloud. The profiles of the density, pressure, and velocity for
the case of the initial pressure of 26 GPa are presented in
Fig. 10. The position of the high-pressure layer corresponds
to the vertical dotted lines, between x=160 and 200 nm.

At the time of 3.1 ps 	panel �a�
, on the left side from the
initial heated layer, the matter is compressed to the density
�=3.07 g /cm3 and a plateau of a density �=2.4 g /cm3 is
formed. In these two regions, the pressure is homogeneous
and is equal to 13 GPa. The density plateau contains the
heated matter, which was expanded to the pressure of 13
GPa. This region corresponds to the plateau plt 3 in Fig. 7.
Behind the plateau, the density decreases from 2.52 to
2.4 g /cm3. This part corresponds to the rarefaction wave
�det 3 in Fig. 7�.

To the right from the initial position of heated layer, a
plateau of a constant density �e=1.8 g /cm3 and thickness
hp1=9 nm is formed. It splits the rarefaction wave into two

parts: first, which evolves in the liquid matter, where ���e,
and second, which evolves in the liquid-vapor mixture,
where ���e. This plateau corresponds to plt 1 in Fig. 7, and
the two parts of the rarefaction wave correspond to det 1 and
det 2.

Between the rarefaction waves det 1 and det 3, the density
and the pressure are constant and smaller than the initial
values ��=2.52 g /cm3 and P=18.8 GPa�. In this region,
two rarefaction waves interact �for these initial conditions the
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FIG. 9. �Color online� Adiabats of the aluminum in the �P ,��
plane. The initial pressures at the starting point a are 20 GPa �1�, 26
GPa �2�, and 43 GPa �3�. The dashed curve is the binodal and C
indicates the critical point.

TABLE I. Values of the sound velocity and density on the bin-
odal for the adiabats �1�–�3� in Fig. 9. The initial density is �s

=2.7 g /cm3.

P2

�GPa�
�e

�g /cm3�
c0

�km/s�
ce1

�km/s�
ce2

�km/s�

20 2 6.85 3.5 0.4�10−3

26 1.8 7.17 3 4�10−3

43 1.18 8 1.05 0.22
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FIG. 10. �Color online� Profiles of the density �solid lines�, pres-
sure, and velocity �dotted lines� for the case of relaxation of a 40
nm high-pressure layer at the Al target surface. The initial pressure
in the layer is 26 GPa. Panel �a� presents the density and pressure
profiles at t=3.1 ps; panels �b� and �c� present the density and
velocity profiles at t=6 and 15 ps, respectively.
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time tr=2.8 ps� and the density and pressure are homoge-
neous and decrease with time.

Numerical results show that �i2=2.44 g /cm3 for P2
=20 GPa and 2.28 g /cm3 for P2=43 GPa. As the slope of
the adiabat in the two-phase region decreases as P2 increases
�see Fig. 9�, the value of the corresponding adiabatic index �
and the ratio �i2 /�s decrease.

A gap of density ��1.55 g /cm3 is formed between the
plateau plt 1 of the density �e and a second plateau of the
same density. The velocities in these two plateaus are con-
stant, but the velocity is smaller in the second plateau. The
first plateau thickness is hp1=14 nm and the second plateau
thickness is hp2=3 nm. These values are in agreement with
analytical results presented in Sec. II A. For our set of pa-
rameters, the time of gap formation tf =5 ps, hp1= �ce1
−ce2�tf =15 nm, and hp2= �ce1−ce2��t− tf�=3 nm for t
=6 ps.

The plateau size hp1, the velocity ue, and the positions xe2
and xe2� at time tf for three chosen values of P2 are presented
in the Table II. As the velocity ue�c0−ce1 and the time tf
��s /�e �see Sec. II A�, ue and tf increase with the pressure
P2. The thickness hp1 of the plateau decreases as the pressure
P2 increases because the jump of the sound velocity on the
isentrope decreases �see Table I�.

The simulations show that for t� tf, the plateau plt 1
moves to vacuum with the constant velocity ue. The density
in the gap continues to decrease and the size of the plateau
plt 2 increases. When the front of the rarefaction wave det 4
reaches the compressed matter, a part of the rarefaction wave
det 4 is transmitted in the compressed matter, and a part of it
is reflected. The reflected wave interacts with the incident
wave and a new interaction region appears in the density
profile. The density in this interaction zone is equal to the
density in the plateau plt 2 at time tf2=10 ps. For t� tf2, a
second gap appears between the compressed matter and the
plateau plt 2 in the density profile.

The density and the velocity profiles at t=15 ps are pre-
sented in Fig. 10�c�. A rarefaction wave evolves in the com-
pressed matter, and a second gap is appeared between the
compressed matter and the plateau plt 2. The density and the
velocity in two plateaus remain constant. The size of plateau
plt 1 is hp1=14 nm, and the size of plateau plt 2 is hp2
=15 nm. The density in the gap between two plateaus is �
�0.7 g /cm3, and its size is larger.

The size hp2 of second plateau, the velocity ue2, and the
positions xe2� and xi, obtained in numerical simulations at
time tf2 are also presented in Table II. The maximum size
hp2�tf2� of the second plateau decreases as the initial pressure
P2 increases, while the velocity ue2 and the time tf2 increase.

These results are in agreement with the analytical model pre-
sented in the previous section where ue2�ci2−ce1, tf2
��i2 /�e, and hp2= �ce1−ce2��tf2− tf�.

As the time goes on, the plateaus disappear, and all matter
in the gaps is ejected in vacuum.

IV. DROPLETS

As we have seen in Sec. II A, a rarefaction wave propa-
gates into the plateau with a low velocity ce2. The propaga-
tion of the rarefaction front across the plateau defines an
upper limit of the plateau lifetime.

When the plateaus disappear, two situations may occur. If
more than half of the matter volume is occupied by liquid,
the matter in the gaps is composed of vapor bubbles sur-
rounded by liquid matter. As the time goes on, the vapor
bubbles continue to grow and drive the liquid to a fragmen-
tation. If less than half of the volume is in liquid phase, the
matter in the gaps is composed of liquid droplets, which
evolve in vapor. They are eventually ejected in vacuum.

In general case, the heated matter expands into an ambient
gas and induces its compression. As long as the pressure in
the compressed gas is lower than the pressure in the heated
matter, the ambient gas has no effect on the expansion pro-
cess. However, if the pressure in the compressed gas is
greater than the pressure in the plateau, it slows down the
matter in the plateau and drives it to a fragmentation.

The model presented above is one dimensional. It is suf-
ficient for estimates of the liquid-vapor volume repartition in
expanded matter, but it cannot predict the size of liquid drop-
lets. A maximum size for stable droplets can be determined
by the hydrodynamic disruptive and restoring forces acting
on each droplet. The long term evolution of plateaus and
gaps needs to be considered separately.

Concerning the plateau, two scenarios are possible de-
pending on the pressure in the gas in the front of the plateau:
either the plateau is evaporated, if the pressure in the gas is
smaller than the pressure in the plateau, or it is fragmented in
a liquid phase, if the pressure in the gas is greater than the
pressure in the plateau. The first scenario occurs for a thin
and a low-density plateau �that is, for a sufficiently high
initial pressure, where the intersection point is close to the
critical point�. The second one occurs for a thick and a high-
density plateau �that is, for a low initial pressure�. Concern-
ing the gaps, the liquid-vapor repartition depends on how
fast the temperature drops down and when the droplet vapor-
ization stops.

A. Disappearance of the plateau

The propagation of the plateau into an ambient gas in-
duces compression of the gas in the front of the plateau.

TABLE II. Simulation results for a 40 nm high-pressure layer relaxation for the adiabats �1�–�3� in Fig. 9. The initial density is �s

=2.7 g /cm3.

P2

�GPa�
ue

�km/s�
tf

�ps�
hp1�tf�
�nm�

xe2�tf�
�nm�

xe2� �tf�
�nm�

ue2

�km/s�
tf2

�ps�
hp2�tf2�

�nm�
xe2� �tf2�
�nm�

xi�tf2�
�nm�

20 1.5 4.2 16 205 181 0.28 9.5 17 183 155

26 2 5 14 209 183 0.58 10 15 186 153

43 3.8 7 7 222 191 1.5 17 8.6 200 149
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Similarly to the shock wave analysis in Sec. II B, the density
�g and the pressure Pg in the compressed gas can be esti-
mated from Eq. �5� where the velocity corresponds to the
plateau velocity.

If the pressure Pg is smaller than the pressure in the pla-
teau, the compressed gas can be neglected. The maximum
sizes of the plateaus plt 1 and plt 2 are achieved at times tf
and tf2, respectively. According to Sec. II A, the rarefaction
front reaches the other side of the plateau at the time tg1
= �ce1 /ce2�tf for the plateau plt 1 and at the time tg2= tf
+ �tf2− tf�ce1 /ce2 for the plateau plt 2. As the sound velocity
ce2 increases with the pressure P2 �see Table I�, and as the
plateau size decreases as P2 increases �see Table II�, the life-
times of the plateaus dramatically decrease as P2 increases.
For P2=20 GPa, tg1=36.7 ns and tg2=46.3 ns, and for P2
=43 GPa, tg1=33 ps and tg2=54 ps.

If Pg is greater than the pressure in the plateau, the pres-
sure of ambient gas reduces the plateau velocity. If the gas
density �g is smaller than the density �e in the plateau, the
Rayleigh-Taylor instability might appear at the interface be-
tween the plateau and the compressed gas. The instability
can induce the plateau fragmentation and its premature de-
struction. This scenario could be operational for small initial
pressures, when the plateau lifetime is relatively long.

The Rayleigh-Taylor instability of a plasma plume ex-
panding in ambient gas was considered in Ref. 20. Although
the authors were considered nanosecond laser pulses, the do-
main of fluences of a few tens of J /cm2 is the same as we are
interested in this study. The authors showed the instability
development in the time scale of 10 ns and mixing of the
plasma and gas in the thickness more than 10 �m.

Let us consider the matter in plateau and in the ambient
gas in front of it as two incompressible liquids, and an inter-
face perturbation of the initial amplitude h0. For the
Rayleigh-Taylor instability, the growth rate is expressed as

RT

2 =−ak+�k3 /�e �Ref. 21�, where � is the surface tension
and a is the acceleration. The growth rate of the instability is
maximum for km=�a�e /3�. Assuming that Pe� Pg, the ac-
celeration can be expressed as a� Pg /�ehp, where hp is the
thickness of the plateau, and then km=�Pg /3hp�. The ampli-
tude of the perturbation becomes on the order of the plateau
size at the time tRT= �1 / 

RT
�ln�hp /h0�. One may expect that
at this time, the plateau will be divided in fragments of the
size 2� /km. These fragments evolve in the ambient gas to
form liquid droplets. The size of the liquid droplets issued
from the plateau fragmentation can be estimated by assum-
ing the conservation of the mass and the volume of the frag-
ments. Therefore, each fragment forms a liquid droplet of a
radius

R � �3�hp

km
2 �1/3

. �8�

Let us consider, as an example, an ambient gas of initial
density �ext=10−3 g /cm3, initial pressure Pext=10−4 GPa,
and with an adiabatic index �=5 /3. For the initial pressure
P2=20 GPa in the heated layer, the expansion of the matter,
according to Eq. �5�, compresses the ambient gas to a pres-
sure Pg=3�10−3 GPa and a density �g=4�10−3 g /cm3.
For these conditions the pressure in the first plateau is Pe
=2�10−4 GPa and the density �e=2 g /cm3. The pressure
and the density gradients have opposite signs and the
Rayleigh-Taylor instability can appear at the interface be-
tween the plateau plt 1 and the compressed gas. The surface
tension � is supposed to be a function of the liquid tempera-
ture. The dependence ��T�=�0�1−T /Tc�n is taken from Ref.
22, where Tc is the critical temperature, and �0 and n are two
material constants. For hp1=16 nm and �=0.52 J /m2, we
find the unstable mode km=11 �m−1 and assuming hp1 /h0
�3, the instability time tRT=1.3 ns. In this case, the time tRT
is smaller than the time of plateau evaporation tg1. Conse-
quently, the plateau is fragmented due to the instability and,
according to Eq. �8�, the radius of the formed liquid droplet
is R=107 nm.

The plateau disparition times are estimated for three ini-
tial pressures P2 considered in the simulations. They are pre-
sented in Table III. For P2=20 and 26 GPa, the first plateau
is fragmented due to the instability growth. Other plateaus
disappear by expansion in vacuum.

B. Droplet size

The liquid droplets are formed from a liquid matter in the
plateaus and from a liquid matter in the gaps. From the nu-
merical results presented in Table II, one can estimate the
repartition of the liquid mass in the expanding cloud at the
moment of plateau disparition. This repartition is presented
in Table III. For P2=20 and 26 GPa, the liquid mass corre-
sponds to 80% of the initial heated mass. The major part of
the liquid matter is in the two plateaus for P2=20 GPa and it
is in the plateau plt 1 and the gap gap 2 for P2=26 GPa. For
P2=43 GPa, only 67% of the heated mass is in the liquid
state at the moment when the plateaus disappear. The major
part of the liquid matter is in the gaps.

The size of a stable droplet issued from the gap or from
the plateau expansion can be obtained from a balance be-
tween the dynamic pressure and the surface tension acting on
each droplet.11,23 Supposing that the velocity gradient in the
gap du /dx is constant and the droplet has a spherical form,

TABLE III. Plateau disparition times and repartition of the liquid mass in the expanding cloud for three
values of P2.

P2

�GPa�
td2

�ns�
gap 2
�%�

plt 2
�%�

td1

�ns�
gap 1
�%�

plt 1
�%�

20 46.3 17 25 1.3 14 29.6

26 3.7 27 15 0.7 18 23.3

43 0.054 34 6 0.033 19 5
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its kinetic energy can be estimated as Wk= �1 /2��V	u0
2

+ �1 /5�R2�du /dx�2
, where V=4�R3 /3 is the droplet volume
and R is the droplet radius. Estimating then the energy of
surface tension as Ws=4�R2�=3�V /R, one can find the
maximum droplet radius from the condition of the minimum
of the droplet energy density, �Wk+Ws� /V, as follows:

R = � 15�

��du/dx�2�1/3

. �9�

The radius of droplets formed in different parts of the ex-
panding cloud for the initial pressures in the heated layer is
presented in Table IV. The average size of the droplets
formed by the plateau fragmentation �plt 1 for P2=20 and 26
GPa� is estimated with Eq. �8�. The size of droplets issued
from the plateau expansion �plt 2 for all values of P2 and plt
1 for P2=43 GPa� is estimated by using Eq. �9� with the
velocity gradient in the rarefaction wave and the liquid den-
sity in the plateau. The dependence ��T� has been taken from
Ref. 22 according to the discussion presented in Sec. IV A.

For each pressure, the bigger droplets are formed in the
second gap �gap 2�. As the velocity gradient is smaller in this
gap, the droplet size is greater. This result is confirmed by
recent simulations16,17 and experiments.13 The simulations
indicate that the bigger droplets are formed near the target
surface. In the experiments, two populations of droplets are
observed: small droplets that are more abundant in the fast
expanding cloud and larger particles that are located mostly
at the back. Table IV shows that the average droplet radius
decreases as the pressure P2 increases. The sound velocity
ce2 increases with P2, while the plateau size decreases.
Therefore, the plateau lifetime decreases as P2 increases, the
velocity gradients in the different parts of the expanding
cloud are greater, and the droplet sizes decreases.

Our theoretical estimates of the droplet formation can be
compared with experiments. The homogeneously heated thin
films are the most appropriate object for such a comparison

as the thermal conductivity was neglected in our simulations.
In the experiment reported in Ref. 12, the authors found that
the average nanoparticle radius decreases as the laser fluence
increases as long as the matter evolution can be described by
a single temperature. For greater fluences, a double-
temperature adiabatic expansion takes place. In this case, the
liquid-vapor phase transition occurs for a smaller ion tem-
perature and according to our model, the average droplet
radius increases.

V. CONCLUSION

We presented a complete study of the relaxation process
of an isochoric liquid layer at a target surface that accounts
for a liquid-vapor phase transition. The consecutive steps of
the relaxation process are described by an analytical model.
The density profile of expanding layer is nonmonotonic due
to the transformation of a part of heated matter in a liquid-
vapor mixture. Liquid layers in the expanding flow have a
thickness of a few tens of nm and a velocity up to a few
km/s.

The theoretical analysis is confirmed by numerical simu-
lations performed for three different initial pressures in a hot
layer on a surface of an aluminum target. The matter is de-
scribed by the multiphase equation of state by Bushman et
al.19 The evolution of the expanding cloud agrees with the
predictions of the analytical model. The repartition of the
liquid and vapor in the expanding matter is estimated, and
the maximum liquid droplet sizes are determined. The esti-
mate of the liquid droplet sizes is in agreement with recent
numerical and experimental results.12,13,16,17 The larger drop-
lets are formed near the target surface, while the smaller
droplets are formed in the front of the expanding flow. More-
over, the average droplet size decreases as the initial pressure
increases.

Our simple analysis provides a general framework of the
matter evolution during the relaxation with phase transition.
In a more realistic description, one should account for the
target expansion during the heating process and for the heat
conduction. Moreover, several shock waves may be launched
into the matter with a continuous delay time. In this case,
several plateaus of different densities may be formed in the
expanding cloud as it was observed in the numerical simula-
tions performed in Ref. 4. The densities of these plateaus
correspond to the crossing points of the relaxation curves
with the binodal. Although the analysis of the expansion pro-
cess is more complicated, our general approach remains
valid as well as the estimates for the liquid-vapor mass rep-
artition and for the droplet size.
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